@WaterWaiver@AllNewTypeFace There’s a perception that we could just reuse existing methane gas (i.e. “natural gas”) infrastructure for hydrogen. But often that just isn’t the case:
"The pipelines that transport hydrogen are made of the same basic material as most of those built for natural gas: steel. But hydrogen is a much smaller molecule than methane, the main component in natural gas. In fact, hydrogen is the smallest molecule on Earth. Its size means it can squeeze into tiny spaces in certain steel alloys in a way that natural gas cannot. That can cause “embrittlement,” making the metal more likely to crack or corrode. Hydrogen molecules are also much more likely to leak from valves, seals, and other connection points on pipelines (which risks undermining green hydrogen’s climate benefits). And hydrogen is transported in a more pressurized state than natural gas, which puts more stress on the pipeline carrying it.
“Rather than transporting 100 percent hydrogen, many companies are now testing whether they can blend hydrogen with natural gas for transport in existing pipelines. In a study released last summer, the California Public Utility Commission found that up to 5 percent hydrogen blended with natural gas appears safe, but higher percentages could lead to embrittlement or a greater chance of pipeline leaks. Internationally, France places the highest cap on hydrogen blending, at 6 percent, according to the International Energy Agency (Germany allows blending at 8 percent under certain conditions).”
If the aim is to reach net zero emissions by 2050, a 90% or 95% methane to 10% or 5% hydrogen gas blend just isn’t that useful for reaching that goal.
(And that’s assuming the hydrogen is green hydrogen as well.)
And if a lot of your infrastructure has to be retrofitted anyway, electrification plus renewables plus storage makes a lot more sense in many cases.
There are still use cases where green hydrogen will be useful — international long-haul flights, rockets, some industrial processes, etc. But it’s not the best solution in most cases.
You’re just spreading propaganda against hydrogen. It is fundamental to a zero emissions society. It is even necessary to get the grid to zero emissions. Nearly all rhetoric against hydrogen is just some kind of corporate propaganda, if not from the battery industry then it is from the petroleum industry.
Hydrogen is essential, but we need it for the chemical industry, steelmaking, etc. Using hydrogen as an incredibly expensive and inefficient battery by turning it back into electricity is not the future.
Hydrogen has to be stored at cryogenic temperatures and high pressures to reach any sort of capacity. Desnsity wise your not going to beat cubic kilometers of water halfway up a mountain in cost per kw, even before factoring in the far higher power losses that come with synthesizing or domposing hydrogen.
Yes, that’s the point. The problem of batteries is that you need to mine a vast amount of raw materials for them. So it doesn’t even matter how much “better” they are. It is simply not an answer no matter what.
It also can partly re-use natural gas infrastructure, allowing them to exploit existing capital.
@WaterWaiver @AllNewTypeFace There’s a perception that we could just reuse existing methane gas (i.e. “natural gas”) infrastructure for hydrogen. But often that just isn’t the case:
"The pipelines that transport hydrogen are made of the same basic material as most of those built for natural gas: steel. But hydrogen is a much smaller molecule than methane, the main component in natural gas. In fact, hydrogen is the smallest molecule on Earth. Its size means it can squeeze into tiny spaces in certain steel alloys in a way that natural gas cannot. That can cause “embrittlement,” making the metal more likely to crack or corrode. Hydrogen molecules are also much more likely to leak from valves, seals, and other connection points on pipelines (which risks undermining green hydrogen’s climate benefits). And hydrogen is transported in a more pressurized state than natural gas, which puts more stress on the pipeline carrying it.
“Rather than transporting 100 percent hydrogen, many companies are now testing whether they can blend hydrogen with natural gas for transport in existing pipelines. In a study released last summer, the California Public Utility Commission found that up to 5 percent hydrogen blended with natural gas appears safe, but higher percentages could lead to embrittlement or a greater chance of pipeline leaks. Internationally, France places the highest cap on hydrogen blending, at 6 percent, according to the International Energy Agency (Germany allows blending at 8 percent under certain conditions).”
Source: https://climate.mit.edu/ask-mit/can-we-use-pipelines-and-power-plants-we-have-now-transport-and-burn-hydrogen-or-do-we-need
If the aim is to reach net zero emissions by 2050, a 90% or 95% methane to 10% or 5% hydrogen gas blend just isn’t that useful for reaching that goal.
(And that’s assuming the hydrogen is green hydrogen as well.)
And if a lot of your infrastructure has to be retrofitted anyway, electrification plus renewables plus storage makes a lot more sense in many cases.
There are still use cases where green hydrogen will be useful — international long-haul flights, rockets, some industrial processes, etc. But it’s not the best solution in most cases.
#ClimateChange #hydrogen #gas #NetZero #electrification #transport
You’re just spreading propaganda against hydrogen. It is fundamental to a zero emissions society. It is even necessary to get the grid to zero emissions. Nearly all rhetoric against hydrogen is just some kind of corporate propaganda, if not from the battery industry then it is from the petroleum industry.
Hydrogen is essential, but we need it for the chemical industry, steelmaking, etc. Using hydrogen as an incredibly expensive and inefficient battery by turning it back into electricity is not the future.
@zurohki @Hypx Given the ability to build pretty large hydrogen or ammonia tanks, would it scale better than dams or chemistry for week-plus durations?
Hydrogen has to be stored at cryogenic temperatures and high pressures to reach any sort of capacity. Desnsity wise your not going to beat cubic kilometers of water halfway up a mountain in cost per kw, even before factoring in the far higher power losses that come with synthesizing or domposing hydrogen.
Yes, that’s the point. The problem of batteries is that you need to mine a vast amount of raw materials for them. So it doesn’t even matter how much “better” they are. It is simply not an answer no matter what.