• supersquirrel@sopuli.xyz
    link
    fedilink
    English
    arrow-up
    191
    arrow-down
    2
    ·
    edit-2
    7 months ago

    Big volcanoes look like this

    (Mount Rainier, Washington)

    The BIGGEST volcanoes look like this

    Or this

    Notice how they don’t have that nice big pretty volcano cone shape? It just looks like some drunk geologists scribbled on a map and drew circles around a low lying area with a lake or two in it and called it a “volcano” or a “volcanic zone”.

    The reason though is that the BIGGEST and most destructive volcanic eruptions tend to happen with lava/magma that doesn’t flow very well and like when you get a stuffed nose, everything gets blocked up. Like many of us, these volcanos don’t solve the problem and go take a decongestant or blow their nose, they just sit there sniveling and stewing, failing to release the pressure that keeps building and building and building.

    These eruptions are called felsic eruptions (the opposite of mafic, goopy eruptions you have seen footage of from Hawaii where the lava comes out like a fluid). An immense amount of gas is released by magma as it becomes exposed to the surface (which then we call it “lava”) as the gas is no longer kept in the magma at immense pressures. The magma can’t flow and “pass the gas” so to speak so a plug forms and what you get is a terrifyingly big pressure cooker that just builds and builds like that person on the plane next to you that just keeps sniffing and sniffing and never blowing their nose.

    When the built up pressure finally overcomes the plug, the resulting explosion is so catastrophic it doesn’t leave a clean volcano shape. What you are left with is an uneven low topography dotted with lakes that marks the site of an incomprehensibly large explosion, hence the topography of Yellowstone, Wyoming and the Taupo Volcanic Zone on the North Island of New Zealand.

    TIME FOR SOME STATS THAT WILL BREAK YOUR BRAIN


    "The Taupō Volcanic Zone has produced in the last 350,000 years over 3,900 cubic kilometres (940 cu mi) material, more than anywhere else on Earth, from over 300 silicic eruptions [my edit: “Felsic” means “has lots of silica/silicic (silicic? seriously wikipedia?) and wants to form minerals high in silica like quartz and feldspar”], with 12 of these eruptions being caldera-forming. Detailed stratigraphy in the zone is only available from the Ōkataina Rotoiti eruption but including this event, the zone has been more productive than any other rhyolite predominant volcanic area [my edit: Rhyolite is a record of catastrophe, it is a Felsic, silica-rich igneous rock like Granite except it cooled FAST at the surface instead of in big underground “batholiths” (that make up a good portion of the Canadian Shield and the NE of the US among other places) where the minerals had time to grow into big pretty crystals, same ingredients as Granite but with much more exciting baking instructions] over the last 50,000 odd years at 12.8 km3 (3.1 cu mi) per thousand years. Comparison of large events in the Taupō volcanic zone over the last 1.6 million years at 3.8 km3 (0.91 cu mi) per thousand years versus with Yellowstone Caldera’s 2.1 million year productivity at 3.0 km3 (0.72 cu mi) per thousand years favours Taupo…

    The last major eruption from Lake Taupō, the Hatepe eruption, occurred in 232 CE. It is believed to have first emptied the lake, then followed that feat with a pyroclastic flow that covered about 20,000 km2 (7,700 sq mi) of land with volcanic ash. A total of 120 km3 (29 cu mi) of material expressed as dense-rock equivalent (DRE) is believed to have been ejected, and over 30 km3 (7.2 cu mi) of material is estimated to have been ejected in just a few minutes."

    ^https://en.wikipedia.org/wiki/Taupō_Volcanic_Zone

    “The main extremely violent pyroclastic flow travelled at close to the speed of sound and devastated the surrounding area, climbing over 1,500 m (4,900 ft) to overtop the nearby Kaimanawa Ranges and Mount Tongariro, and covering the land within 80 km (50 mi) with ignimbrite [my edit: the name for pyroclastic flow deposits, i.e. pumice and ash, that kind of thing]. Only Ruapehu was high enough to divert the flow.  The power of the pyroclastic flow was so strong that in some places it eroded more material off the ground surface than it replaced with ignimbrite.  There is evidence that it occurred on an autumn afternoon and its energy release was about 150 megatons of TNT equivalent. The eruption column penetrated the stratosphere as revealed by deposits in ice core samples in Greenland and Antarctica.”

    ^https://en.wikipedia.org/wiki/Taupō_Volcanic_Zone

    why the did I make this stupid meme in feet instead of metric, I am such an asshole -facepalm

    • FlihpFlorp@lemm.ee
      link
      fedilink
      English
      arrow-up
      9
      ·
      7 months ago

      Made me whip out my geology notes I took a few semesters ago, thanks for the fun explanation

      • supersquirrel@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        23
        ·
        edit-2
        7 months ago

        So you’re saying we need to cover Wyoming in cement. Gotcha.

        I am sure if you sold it to Wyoming voters as a way to hurt trans people AND immigrants at the same time they would happily vote for it and drown themselves alive in a sea of concrete.

        • Zron@lemmy.world
          link
          fedilink
          English
          arrow-up
          14
          ·
          7 months ago

          If you’re already paying for, just roughly guessing, trillions of tons of concrete, surely you can pay off all 12 people that live in Wyoming.

    • Zacryon@lemmy.wtf
      link
      fedilink
      English
      arrow-up
      6
      ·
      7 months ago

      Thank you, kind geology enthusiast.

      Really barely comprehensible how immense those volcanic activities are.

      On a side note, you’ve listed insane unit after insane unit of death and destruction. And then there is this sentence:

      There is evidence that it occurred on an autumn afternoon

      That was a cute turn and I laughed. :D

    • interolivary@beehaw.org
      link
      fedilink
      English
      arrow-up
      5
      ·
      7 months ago

      Ohhh, I had no idea there were different kinds of volcanoes but it does make sense in hindsight.

      Well, I guess this might have been covered in primary or secondary education at some point but it’s been about 3000 years since my last geography class

      • supersquirrel@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        8
        ·
        edit-2
        6 months ago
        yo geolooggggyyyyyyy (lots of good brain food I promise)

        There is a wonderful diverse world of volcanic eruptions! One thing you might not have thought about is how glaciers often form at the top of large cone volcanoes and the way the lava erupting interacts with a large volume of ice can shape the eruption significantly. One of the biggest results are lahars, like muddy, liquidy avalanches but even faster and deadlier.

        https://www.usgs.gov/media/images/d-claw-computer-simulation-landslide-begins-mount-rainiers-west-flank-tahoma-glacier

        https://www.usgs.gov/programs/VHP/lahars-move-rapidly-down-valleys-rivers-concrete

        To give you a good point of reference though, one thing that links all volcanic eruptions and is a good axis for comparison between different eruptions and volcanoes is that all magma pretty much comes up from the interior of the earth to the near surface starting at the same chemical composition (called “mafic” it sounds like “basic”). Mafic minerals are heavy, dense and tend to be dark colored when viewed in a hand specimen, a common mafic rock is Basalt. Most of the oceanic crust is basalt.

        Available Wherever You Get Your Bottoms Of Oceans

        Felsic minerals tend to be light both in mass and in coloring, a comon felsic rock is Granite.

        Looks like your mom’s countertop, I remember it well how perfectly the skin of her naked legs complemented the gorgeously polished crystal textures of quartz, potassium feldspar (K-feldspar), sodic plagioclase feldspar, hornblende amphibole, and mica

        This is a graph of Viscosity, the more Viscous the Magma the less ability it has to flow like a liquid (and thus the more likely a plug is likely to form inside a volcano). It is also more difficult for lower temperature magma to flow, and Felsic lava is almost always lower temperature (cooling had to occur to become Felsic in the first place so).

        https://en.wikipedia.org/wiki/Magma

        Here is something to ground these two ends of what probably seems like an arbitrary spectrum to focus on, the Oceanic Crust (i.e. the bottom of the ocean) on this planet is overwhelmingly made up of mafic rocks (i.e. Basalt) and large amounts of felsic rocks only really form on continental plates where there is the space and depth of rock to house massive chambers of magma, especially since Oceanic Plates are always getting subducted and recycled unlike Continental Plates (and thus the magma might be subducted & recycled before it could even begin the process of becoming significantly felsic). This axis of chemistry is critical to Geologists because it points directly to some of the biggest trends of geology on the planet and a related fact I might as well drop here is that because of these dynamics Continental Plates (i.e. basically the continents) can be orders of magnitude older (on the order of 1 billion years or older, the earth is only 4 or so billion years old) than oceanic crust which tends to be younger than 200 million years old (and often is much younger).

        On Continental Plates if magma feeds into large underground chambers (batholiths) and is allowed to cool slowly then certain minerals will begin to form and precipitate out like snow that layers up on the bottom of the chamber. The specifics of what minerals these are depends on how long, how hot, how much pressure and other factors but you can vaguely think of it as a process of distillation where magma progresses from the original “mafic” composition to a “felsic” one as the high temperature mafic minerals crystallize out leaving behind a progressively more felsic magma mixture. The felsic minerals don’t crystallize out until the magma has significantly cooled and thus if the magma chamber undergoing this process is integrated into an eruption, it can become extremely explosive and destructive.

        https://opentextbc.ca/geology/chapter/4-2-magma-composition-and-eruption-style/

        Half Dome in Yosemite California is such a trip because it is so clearly what we imagine in geology when we talk about a really big underground chamber of magma (after it has cooled into rock obv), Half Dome just looks like exactly how you would imagine it if you dug up an old magma chamber and cracked in half with a suitably large hammer


        • interolivary@beehaw.org
          link
          fedilink
          English
          arrow-up
          5
          ·
          7 months ago

          Huh, interesting. I didn’t expect to learn about volcanoes today but here I am! Thank you for the explanation

    • Rinox@feddit.it
      link
      fedilink
      English
      arrow-up
      3
      ·
      edit-2
      7 months ago

      Except Vesuvius, which looks like a volcano, but in 79CE erupted violently sending lave, magma and molten rocks several kilometers away, exactly like the stuffy nose you described. It completely destroyed Pompeii and Herculaneum, burying them for thousands of years.

      Still nothing when compared to the destruction that the “Campi Flegrei” volcano brought 37’000 years ago, completely burying a huge section of the Campanian coastline.

      • supersquirrel@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        1
        ·
        edit-2
        7 months ago

        Super cool!!

        Aain I love how it looks like a drunk geologist made a big scribble on a map and said before passing out “that Campi Flegrei, that’s a BIG one right there!” and you are just left looking at the map being like… what… are you sure that just looks like you randomly circled a huge part of the landscape?..like… really the whole bay?

        • Rinox@feddit.it
          link
          fedilink
          English
          arrow-up
          2
          ·
          7 months ago

          Yeah, it pretty much blew out that whole section of coastline, that big hole is called a “caldera”. It’s still active btw, you can go and check it out if you want. Look for Solfatara di Pozzuoli.

          You can also look at the Greek island of Santorini, where the whole western and central part of the island was blown off during the bronze age iirc. Historians speculate the eruption, earthquake and tsunamis caused by the event could have partially influenced the collapse of the Minoan civilization, the rise of the Mycenaeans, turmoil in Egypt and possibly even the fall of the Chinese empire due to a global winter. Crazy stuff

          • supersquirrel@sopuli.xyz
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            7 months ago

            Are we just a bunch of crazy conspiracy theorists sitting in dark rooms with a computer and pinboard against the wall, complete with strings between posted mugshots of lava domes and dikes, muttering to ourselves as we circle vaguely roundish things on a map in red ink and exclaim “ANOTHER!!!” ??

            No, we are usually in the middle of nowhere in the woods hiking erratically across the landscape with nobody around so we tend to shout at things more than mutter because why not.

    • Nindelofocho@lemmy.world
      link
      fedilink
      English
      arrow-up
      2
      ·
      7 months ago

      Thank you that was super informative. Is there anything that can be done to mitigate an impending eruption? Ive always heard that if one of the big super volcanoes goes it could be quite catastrophic for the entire world. Surely theres been some research into like pressure relief holes or something…antacid tabs?

      • supersquirrel@sopuli.xyz
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        7 months ago

        Surely theres been some research into like pressure relief holes or something…antacid tabs?

        I am sure there are lots of geologists who have thought of it, it makes sense right?

        The problem is that nobody gives a shit about listening to geologists unless they are talking about where to find oil. Even if a geoengineering project of this scale and magnitude (with such catastrophic consequences if it goes wrong) where possible with near current geological science and hardware this degree of interest and investment of society is only ever committed to visions techbros provide and I don’t think a single techbro has ever taken a geology class and actually remotely paid attention.

        It was geologists in the 1970s who first pointed out the obvious connection between human released CO2 emissions and global warming.

        Nobody gave a shit :)

        (plenty of complicit geologists who made a veryyyyy good living too don’t get me wrong)

        We are just weirdos going on about rocks except when those rocks are really valuable and provide the capacity to create empires but even in those cases we are never really part of that, we are always still the weirdos going on about rocks who everybody is like “ok but can you shut up now and point to the gold on the map?”.

        I know it is a weird example but look at the landscapes of virtual environments, video game developers have been trying to craft evocative landscapes since the beginning of video games even before 3D engines, you would think that some of them might have been interested to find inspiration for world design from the dizzying variety of landforms and stories described in geology (that are perfect to engage a player with because geological landscapes are layered stories first and foremost).

        From the perspective of a geologist, it is obvious for game developers to make world building tools that allow molding an entire mountain range for an open world rpg by first starting with two continents and smashing them together with your mouse over and over again until it made a compelling starting point (instead of just making every damn mountain by hand or just writing a dumb algorithm to randomly generate mountains) and then running a massive river through the mountains for 10 million years to create the main valley for the game.

        Todd Howard released a screenshot of the next Elder Scrolls Game

        the story here was there was a river and then a mountain range came in (some new kid named Appalachians) and was like “sorry dude” but then the Delaware River was like “I am literally going nowhere bro, put your silly mountains wherever you want and I will cut you down when you get in my way”. This friendly conversation has been going on for 400-500 million years, which is about 1/8 of the earth’s history (the earth was a hot mess for the 1st billion so that barely counts). A lot of rivers are pretty lazy, but not the Delaware River, you gotta give it credit.

        A geological sandbox for large scale world design that allowed game developers to quickly and intuitively create landscapes with layered pasts and local variety that perennially inspired curiosity from players seems so obvious to me it is painful. (Also as a fun toy for its own sake).

        Like damn… video games barely know how to make a rock outcrop look natural and it is 2024… ——

        All that being said to point out that your vision of a cool geo-engineering project is mostly unrealistic because of humans not even bringing geology into the picture. Part of the globalized contagion of late-stage capitalism is VERY crucially a collective forgetting of the stories in the landscapes around us. We have been taught to see the landscape around us as a background for our genius, not the primary gift passed down by our ancestors, the foundation of all the beauty in our lives and a fascinating machine of anarchy that creates endless forms of order.

        Everywhere all over the world people are extracting groundwater at a ridiculously unsustainable rate (the fucking AXIS EARTH IS TILTED ON has changed because so much groundwater has been extracted) even while geologists try to point out there is going to be no clean water left???, the dysfunction of our thinking with respect to land goes very deep unfortunately.

        Instead we are left with this trash Elon Musk-esque obsession with spiritually disconnecting ourselves from Earth and leaving for Mars as if the idea of separating us from the landscape (and natural systems/biosphere) we evolved in makes any sense at a basic level of our body maintaining homeostasis effectively or is something we would even desire to do (thanks for that one, sci-fi shows and books!). It is like plucking an ant from an ant colony, carefully placing it into the ocean and whispering “now you can start a new life here”…… It makes no sense.

        • Nindelofocho@lemmy.world
          link
          fedilink
          English
          arrow-up
          3
          ·
          7 months ago

          You are right sadly :( but dont discredit yourself so much! A ton of people do listen and a ton of people think yall are cool! I think you’re cool. Its just that those people and I dont tend to be the people that have the resource to make decisions

        • Jorgelino@lemmy.ml
          link
          fedilink
          English
          arrow-up
          1
          ·
          7 months ago

          On the game side of things, while i agree more realistic landscapes would be awesome, making games is really hard work and you need to be careful where you’ll invest your time in if you want to actually get anything finished. The truth is most people who are not geologists can’t tell the difference between a realistic landscape and an unrealistic one.

          We have some tools for world generation, though i’m not sure how realistic they are. Mostly a mix of noise functions (Simplex, Perlin, etc) and erosion simulation. But i barely understand how that works, so your “geological sandbox” seems a lot less obvious to me.

          Another thing to consider is that in game design, realism will always take a backseat for good gameplay. A map that naturally guides the players where they need to go is usually much more desirable than one that is realistic but unintuitive. Plus when you add magic, gods, or even enough sci-fi, the bar for what counts as a realistic landscape really goes out the window anyway.

          • supersquirrel@sopuli.xyz
            link
            fedilink
            English
            arrow-up
            1
            ·
            edit-2
            7 months ago

            Another thing to consider is that in game design, realism will always take a backseat for good gameplay. A map that naturally guides the players where they need to go is usually much more desirable than one that is realistic but unintuitive. Plus when you add magic, gods, or even enough sci-fi, the bar for what counts as a realistic landscape really goes out the window anyway.

            Why would a map that reflected natural landscapes be more unintuitive than an awkwardly fabricated one that doesn’t reflect any landscape a person has seen looks like?

            sigh and I am really trying not to come off like I am claiming everything has to be realistic to the stupid little details only a geologist would know.

            …but also if natural landscapes ARE unintuitive to most people now, doesn’t that feel like an existential crisis to you? Shouldn’t game developers seek us to reconnect our intuition with natural landscapes to try to heal that awful severance of our soul?

            My point was that building landscapes to tell stories in without building the landscape as a story too is a silly thing to do, both for immersion of the player and for overall work.

            There is no reason a sort of clay like modeling simulator couldn’t give you an artistically conveyed sense of two continental plates colliding, and if the tools were playful and immediate to use (like I pointed out, just being able to smash continents together by clicking and dragging them in different directions at each other like Besieged but for geology) it would be easier for world designers overwhelmed by a blank canvas to start because their canvas already has a story rather than suffocating blank space.

            • Jorgelino@lemmy.ml
              link
              fedilink
              English
              arrow-up
              1
              arrow-down
              1
              ·
              edit-2
              7 months ago

              Why would a map that reflected natural landscapes be more unintuitive than an awkwardly fabricated one that doesn’t reflect any landscape a person has seen looks like?

              Mountain ranges blocking off high level areas, terrain elevation being changed to make sure certain landmarks are more visible/look better on camera, resources such as water/ores, etc needing to be close together for balancing reasons (For survival/crafting games), etc. Reality doesn’t always conform with one’s artistic vision.

              There is no reason a sort of clay like modeling simulator couldn’t give you an artistically conveyed sense of two continental plates colliding, and if the tools were playful and immediate to use (like I pointed out, just being able to smash continents together by clicking and dragging them in different directions at each other like Besieged but for geology) it would be easier for world designers overwhelmed by a blank canvas to start because their canvas already has a story rather than suffocating blank space.

              And my point is that shit is hard to make, doesn’t scale well with large maps (simulating the plates colliding like you said costs memory and processing power), and wouldn’t find an audience because most people can’t tell/don’t care about the difference.

              Look, i’m sorry if i came out as rude, i know you don’t mean that every single little detail must be correct just to please you, i get it. My main gripe with your comment is just the “This is so obvious! Why hasn’t anyone made this?” attitude. Because it ignores the work that needs to go into each of these tools, often for almost no recognition/compensation.

              • supersquirrel@sopuli.xyz
                link
                fedilink
                English
                arrow-up
                1
                ·
                7 months ago

                My main gripe with your comment is just the “This is so obvious! Why hasn’t anyone made this?” attitude. Because it ignores the work that needs to go into each of these tools, often for almost no recognition/compensation.

                It is obvious, and you still aren’t seeing it. You keep misidentifying the main thing I point out as the beginning of the creative process and a catalyst to seeding inspiration for level and world design as an arbitrary complicated ask that has nothing to do with the experience of level designers engaging in the creative process nor how organic and engaging a landscape feels in the end product.

                It’s like, an axiom to this conversation is that the knowledge I have of geology must mean MORE work for game designers and that gives you a right to portray me as having a snarky, unappreciative attitude towards the incredible amount of work that goes into video game development.

                It honestly portrays that lack of interest in geology well, you almost seem annoyed that I would suggest geology contains anything that might be of use to video game development because it involves learning about something other than computers and computers are already hard enough.

                I didn’t make the computers too hard to fit anything else in your brain, I also constantly give mad props to my favorite video game designers especially indie ones and ESPECIALLY open source projects with loving communities or developers who have maintained wonderful games for years and years.

                …but yes… this whole landscape thing? It is obvious as fuck to a geologist, I’m sorry but it is. Treating open world design like it is this thing you have to build entirely by hand or with awkward algorithms that attempt to procedurally generate some unsettling landscape that has to be fixed by hand JUST as much one like this

                Mountain ranges blocking off high level areas, terrain elevation being changed to make sure certain landmarks are more visible/look better on camera, resources such as water/ores, etc needing to be close together for balancing reasons (For survival/crafting games), etc. Reality doesn’t always conform with one’s artistic vision.

                Procedural generation has to be hemmed in by guard rails, Minecraft doesn’t just generate ores willy bully with no thought or check for game balance? No procedurally generated game worth its salt does and there are innumerable successful examples of those. Why would it be any different for building worlds with geologically inspired tools in a fashion I describe?

                I don’t understand why you see a difference there.

                These processes also don’t have to be extremely advanced geophysical simulations, you can abstract shit into elegant systems that reflect deep complexity, it is called good game design.

                • Jorgelino@lemmy.ml
                  link
                  fedilink
                  English
                  arrow-up
                  1
                  arrow-down
                  1
                  ·
                  6 months ago

                  I really don’t understand what i said that ticked you off this much. I’ve started this whole discussion by agreeing with you to begin with, geology IS important, and it SHOULD be more prominent in game development. All i wanted to do was give you my input on why it isn’t more prevalent, and how things are done currently. In any case, here we go again:

                  you almost seem annoyed that I would suggest geology contains anything that might be of use to video game development

                  On the contraire, i like geology, i like your idea,and i agree with you. But when making a game you have 1000 of ideas that are just as good that you need to implement in a short amount of time, with a limited amount of money. Reinventing world generation, as interesting as it is, is simply not usually a priority. I do agree it could improve the game, but i don’t think it’s fair to act this appalled that it doesn’t exist yet the way you imagine.

                  …but yes… this whole landscape thing? It is obvious as fuck to a geologist, I’m sorry but it is. Treating open world design like it is this thing you have to build entirely by hand or with awkward algorithms that attempt to procedurally generate some unsettling landscape that has to be fixed by hand JUST as much one like this

                  In your other comment you asked for a tool that lets you model landscapes by hand, and automatically calculates how that affects tectonic plates. l’m not sure what you think i’m misinterpreting here, this is a complex program that would take several months to make. So either you’re asking a big company to make this, in which case, my comment of “most people wouldn’t notice/care” applies, as they’d only do that if there’s immediate profits, or you’re asking open source/independent devs, in which case, don’t.

                  Procedural generation has to be hemmed in by guard rails, Minecraft doesn’t just generate ores willy bully with no thought or check for game balance? No procedurally generated game worth its salt does and there are innumerable successful examples of those. Why would it be any different for building worlds with geologically inspired tools in a fashion I describe?

                  Okay, so do you think minecraft’s world generation is realistic? Because my point was that game balancing often interferes with realism.