geteilt von: https://lemmy.dbzer0.com/post/4500908
In the past months, there’s a been a issue in various instances where accounts would start uploading blatant CSAM to popular communities. First of all this traumatizes anyone who gets to see it before the admins get to it, including the admins who have to review to take it down. Second of all, even if the content is a link to an external site, lemmy sill caches the thumbnail and stores it in the local pict-rs, causing headaches for the admins who have to somehow clear that out. Finally, both image posts and problematic thumbnails are federated to other lemmy instances, and then likewise stored in their pict-rs, causing such content to be stored in their image storage.
This has caused multiple instances to take radical measures, from defederating liberaly, to stopping image uploads to even shutting down.
Today I’m happy to announce that I’ve spend multiple days developing a tool you can plug into your instance to stop this at the source: pictrs-safety
Using a new feature from pictr-rs 0.4.3 we can now cause pictrs to call an arbitary endpoint to validate the content of an image before uploading it. pictrs-safety builds that endpoint which uses an asynchronous approach to validate such images.
I had already developed fedi-safety which could be used to regularly go through your image storage and delete all potential CSAM. I have now extended fedi-safety to plug into pict-rs safety and scan images sent by pict-rs.
The end effect is that any images uploaded or federated into your instance will be scanned in advance and if fedi-safety thinks they’re potential CSAM, they will not be uploaded to your image storage at all!
This covers three important vectors for abuse:
- Malicious users cannot upload CSAM to for trolling communities. Even novel GenerativeAI CSAM.
- Users cannot upload CSAM images and never submit a post or comment (making them invisible to admins). The images will be automatically rejected during upload
- Deferated images and thumbnails of CSAM will be rejected by your pict-rs.
Now, that said, this tool is AI-driven and thus, not perfect. There will be false positives, especially around lewd images and images which contain children or child-topics (even if not lewd). This is the bargain we have to take to prevent the bigger problem above.
By my napkin calculations, false positive rates are below 1%, but certainly someone’s innocent meme will eventually be affected. If this happen, I request to just move on as currently we don’t have a way to whitelist specific images. Don’t try to resize or modify the images to pass the filter. It won’t help you.
For lemmy admins:
- pictrs-safety contains a docker-compose sample you can add to your lemmy’s docker-compose. You will need to your put the .env in the same folder, or adjust the provided variables. (All kudos to @Penguincoder@beehaw.org for the docker support).
- You need to adjust your pict-rs ENVIRONMENT as well. Check the readme.
- fedi-safety must run on a system with GPU. The reason for this is that lemmy provides just a 10-seconds grace period for each upload before it times out the upload regardless of the results. A CPU scan will not be fast enough. However my architecture allows the fedi-safety to run on a different place than pictrs-safety. I am currently running it from my desktop. In fact, if you have a lot of images to scan, you can connect multiple scanning workers to pictrs-safety!
- For those who don’t have access to a GPU, I am working on a NSFW-scanner which will use the AI-Horde directly instead and won’t require using fedi-safety at all. Stay tuned.
For other fediverse software admins
fedi-safety can already be used to scan your image storage for CSAM, so you can also protect yourself and your users, even on mastodon or firefish or whatever.
I will try to provide real-time scanning in the future for each software as well and PRs are welcome.
Divisions by zero
This tool is already active now on divisions by zero. It’s usage should be transparent to you, but do let me know if you notice anything wrong.
Support
If you appreciate the priority work that I’ve put in this tool, please consider supporting this and future development work on liberapay:
All my work is and will always be FOSS and available for all who need it most.
Requiring a GPU seems like a pretty high bar compared to just regular hosting on some cloud server. Many hosters do not offer those at all or only on one or two expensive models of their physical servers.
There is another problem I see with this approach. The OP discusses using the tool on their PC. However, this entails downloading the problematic images onto their personal computer, which could potentially pose a risk, considering the nature of the imagery that this tool aims to prevent from spreading. It’s the technicality that may unnecessarily put you at risk.
Well, as the admin of the instance you will have to have the image on some computer you are legally responsible for to analyse it, whether that is a server or your local desktop doesn’t really make much of a difference (unless maybe the server is in a different jurisdiction, I am not a lawyer).
Bei den ganzen Kinderporno AI Scanner - sei es jetzt dieser, der viel diskutierte auf Apples iPhones oder sonst einer - frage ich mich immer welches Bildmaterial die AI zum Lernen bekommen hat bzw. woher der Dev die Trainingsdaten nimmt.
Hab letztens eine Erklärung bekommen für ein Modell das das überhaupt nicht brauchen würde, weiß nicht wie dieses hier funktioniert, aber die Erklärung war wie folgt;
Du hast zwei Schritte,
- eine erste AI erstellt aus dem Bild eine textuelle Beschreibung
- eine zweite AI überprüft die Textbausteine auf Zusammenhang mit CSAM.
So brauchst du keine Trainingsdaten von CSAM, sondern es genügt wenn die erste AI NSFW Bilder erkennen kann und Kinder erkennen kann und das beides als Output geben kann (gibt genügend harmlose Bilder von Kindern und genug NSFW Bilder von Erwachsenen als Trainingsdaten), die zweite muss dann den Zusammenhang auf den Textbausteinen erkennen.
Interessant, danke!
Indem man z.B. eine eigene Lemmy-Instanz betreibt und automatisch damit zugemüllt wird?
Es gibt Datensets, mit denen man so was trainieren kann. Zumindest Apple und co können nach genügend Bürokratie dazu Zugriff bekommen.
Wir haben in der Uni mal ein Forschungsprojekt starten wollen um ne KI zu trainieren die sowas erkennt. War damals in Deutschland nicht möglich.
Deswegen ist man in andere Länder gegangen um dort Daten und Verarbeitung zu trainieren.
Dann kam der nächste Schritt: kann man aus der KI denn wieder entsprechendes Material generieren?
Sind in Deutschland Themen mit denen man ganze Rechtsabteilungen beschäftigen kann.
Und gerade bei Apple gehe ich davon aus, dass Sie einfach in ein entsprechendes Land gehen.
Wie kann das legal sein? Jeglicher Besitz zu jeglichem Zweck solcher Inhalte ist strengstens verboten.
@Aiyub@feddit.de meint in Deutschland wäre das gar nicht möglich. Kann auch sein.
Bin da jetzt auch kein Experte ob das in Deutschland wirklich garantiert nicht geht. Aber vom Konzept her, zumindest irgendwo international, messen die Strafverfolgungsbehörden natürlich was im Umlauf ist und es wäre fahrlässig das Material, dass bei Hausdurchsuchungen und co gefunden wird, nicht für genau solche Zwecke zu speichern.
Kann mir auch vorstellen, dass die Behörden nichts rausgeben, aber anbieten so ein neuronales Netz auf sicheren Servern zu trainieren und dann nur die fertig trainierten Model weights für dein neuronales Netz zurückschicken.Hab auch schon Mal ne Doku gesehen, wo die Journalisten das Thema recherchiert haben und auch ziemlich schnell CSAM gefunden haben. Die haben das mit der Polizei oder so abgesprochen gehabt und einen eigenen Rechner und einen eigenen Raum für diese Recherche vorbehalten. Würden natürlich nicht verklagt deswegen. Für legitime Fälle gilt zum Glück der Sinn des Gesetzes und nicht die wortwörtliche Auslegung.
Mini-Korrektur: Ich meinte früher war es nicht möglich, mag sich geändert haben.
Ebenfalls haben sich die Ansätze für KIs geändert.
Very cool; thanks for all your work to make Lemmy safer and better for everyone
Gigachad
Ich hinterfrage den Einsatz dieser Software.
Fände es besser ein etabliertes Modell zu verwenden, bei denen Checksums mit einer Datenbank abgeglichen wird statt KI. Da gibt es dann auch keine false Positives.
Du verlässt dich dann aber darauf, dass diese externe Quelle dir nicht auch Checksummen für anderes Material liefert, dass du dann ausversehen mit-blockst
Im Prinzip ist das beim AI Modell aber auch nicht anders wenn du das nicht gerade selbst trainierst was wohl die wenigsten tun werden mit solchem Content.
Viel wichtiger als diese fälschlich gelöschten Bilder sind fälschlicherweise zugelassene Bilder. Bei hashes reicht schon ein einfaches Wasserzeichen oder ein bisschen zuschneiden, damit das Bild anhand des Hauses nicht mehr erkannt wird.
Ja und nein. Ich muss zugeben, dass ich die Technologie dahinter nie ganz verstanden habe, aber die Menschen die sich den ganzen Tag mit Urheberrechtsverletzungserkennung beschäftigen waren klug genug diese Hashes so zu bauen, dass ähnliche Bilder ähnliche Hashes produzieren (im Gegensatz zu kryptographischen Hashes bei denen genau diese Eigenschaft unerwünscht ist). Man kann damit wohl so eine Art “Distanz” definieren. Je nach dem wie man dann seinen Threshold für erlaubte Distanzen zu den Hashes in der Datenbank setzt hat man mehr/weniger falsche Ergebnisse. Soweit mein Halbwissen dazu.
Ja, mehr Details dazu findest du unter “perceptual hashing”. Ist aber dann halt wieder AI mir allen vor und Nachteilen. Außerdem sind auch die nicht gegen alles gefeit.
Kannst du ein Bild von dem Pferd machen, erkennt die AI richtig als harmloses Bild eines Pferdes. Hälst du nen Apfel davor wird’s plötzlich als porno erkannt. Das Problem lässt sich ein bisschen umgehen, indem man die Berechnung des hashes nicht öffentlich macht, also als closed source betreibt. Dann wird’s schwerer herauszufinden wie genau der Apfel aussehen muss, damit das Ergebnis als porno erkannt wird. Aber dann bist du ja wieder von ner anderen Instanz abhängig, die dir irgendwas zurückschicken kann.
Hier ein Link zu einer Diskussion, wo vor zwei Jahren, als das zum ersten Mal aufkam, einige Leute sehr viel Spaß dabei hatten eines solcher perceptual hashing neuronalen Netze zu verarschen. Sehr unterhaltsam zu lesen.
Ich hatte dabei an sowas wie z.B. contentID von Google gedacht. Da hatte ich mal nen Vortrag zu gesehen und das klang nicht so als wäre da (zumindest damals nicht) ai im Spiel. Der Typ von Google durfte uns natürlich auch nicht genau verraten wie das funktioniert.
Ist aber eigentlich auch egal, jedes dieser Systeme wird Fehler machen dafür ist unerheblich ob der Hash jetzt mit einer KI oder einem anders gearteten Algorithmus erstellt wird.
Der Punkt ist: wenn diese Distanz Berechnung tatsächlich funktioniert musst du das pornographische Material so weit verändern, dass es unattraktiv wird. Im Sinne von “ein bisschen zuschneiden oder ein Wasserzeichen” reichen nicht aus
Es macht niemandem Spaß, diesen kranken Scheiß ohne Vorwarnung zu sehen. Man kann das zwar an so ne Checksum-DB melden wenn man darüber stolpert, aber die Erinnerung bleibt halt. Die KI erkennt laut Autor zu 99% ohne menschliches Auge den Dreck und verhindert so die Verbreitung. Dass es 1% false positives gibt, ist ein Preis, der in diesem Fall absolut in Ordnung ist, finde ich.
Woher nimmst du die 99%? Im verlinkten Post ist nur von unter 1% false Positives die Rede, was aber nicht auf die Erkennungsrate schließen lässt. Überhaupt frage ich mich wie man das testet ohne sich gigabyteweise CSAM herunterzuladen.
Nur es klar ungspunkt Punkt,
Ein 1% false Positive bedeutet nicht das es 99% von kinderporno richtige erkennt.
False positive and false negative kann man noch so zusammen fassen.
Wenn ich ein dummes Model mach die 100 percent von Bilder als schlecht markier, habe ich 100 alle schlechte Bilder erwischt aber auch alle die keinen Problem haben.
Dass ist 100 false positive and 100 positive positive.
Thanks dude