Hello r/emacs! First-time poster here!

I recently wanted to visualise some data in org-mode using a Python source block to generate an image, which was then rendered directly in the buffer.

It took my a couple of goes to work out how to do it.

Given some data like this:

#+begin_src bash :results output file :file data.njson
echo '{"name": "Spock", "editor": "Emacs"}
{"name": "James Kirk", "editor": "Vim"}
{"name": "Dr McCoy", "editor": "Vim"}
{"name": "Scotty", "editor": "Emacs"}
{"name": "Worf", "editor": "ed"}
{"name": "Geordi LaForge", "editor": "Emacs"}
{"name": "Data", "editor": "Emacs"}
{"name": "Jean-luc Picard", "editor": "VS Code"}
{"name": "Wesley Crusher", "editor": "VS Code"}
{"name": "William Riker", "editor": "Vim"}
'
#+end_src

A visualisation can be rendered as follows:

#+begin_src python :results output file :file usage.png
import pandas as pd
import seaborn as sns
import sys

df = pd.read_json("data.njson", lines=True)
axes = sns.histplot(df, x="editor")
axes.get_figure().savefig(sys.stdout.buffer)
#+end_src

The main trick here is to set the :results output file header argument to write the output to a file, and to save the figure to sys.stdout.buffer from Python.

I’ve written about this on my blog too, where you can see the [unsurprising] results of the analysis!

  • publicvoit@alien.topB
    link
    fedilink
    English
    arrow-up
    0
    ·
    1 year ago

    Is there somebody here using Nix(OS) who could teach me how to call this using a Python virtualenv where I deliberately setup pandas + seaborn before (in a shell)?

    • acow@alien.topB
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      I highly recommend nix-direnv and the emacs direnv package. For this example, I quickly threw together a flake using a minimal template,

      {
        description = "Python environment for plotting with Seaborn";
        inputs = {
          nixpkgs.url = github:nixos/nixpkgs/nixpkgs-23.05-darwin;
          flake-utils.url = github:numtide/flake-utils;
        };
      
        outputs = { self, nixpkgs, flake-utils }: 
          flake-utils.lib.eachDefaultSystem (system: 
            let pkgs = import nixpkgs { inherit system; };
                python = pkgs.python3.withPackages (ps: [
                  ps.pandas
                  ps.seaborn
                ]);
            in {
              devShell = pkgs.mkShell {
                buildInputs = [ python ];
              };
            }
          );
      }
      

      Then created a file .envrc with the contents use flake in the same directory as the flake.nix file, and ran direnv allow to allow use of it. I then used this org mode file to test,

      Example of plotting from this [[https://andykuszyk.github.io/2023-11-18-using-emacs-org-mode-as-a-jupyter-notebook.html][blog post]].
      
      Some data to work with,
      
      #+begin_src javascript :tangle data.njson
      {"name": "Spock", "editor": "Emacs"}
      {"name": "James Kirk", "editor": "Vim"}
      {"name": "Dr McCoy", "editor": "Vim"}
      {"name": "Scotty", "editor": "Emacs"}
      {"name": "Worf", "editor": "ed"}
      {"name": "Geordi LaForge", "editor": "Emacs"}
      {"name": "Data", "editor": "Emacs"}
      {"name": "Jean-luc Picard", "editor": "VS Code"}
      {"name": "Wesley Crusher", "editor": "VS Code"}
      {"name": "William Riker", "editor": "Vim"}
      #+end_src
      
      And now we plot,
      
      #+begin_src python :results output file :file usage.png
      import pandas as pd
      import seaborn as sns
      import sys
      
      df = pd.read_json("data.njson", lines=True)
      axes = sns.histplot(df, x="editor")
      axes.get_figure().savefig(sys.stdout.buffer)
      #+end_src
      
      #+RESULTS:
      [[file:usage.png]]
      
    • acow@alien.topB
      link
      fedilink
      English
      arrow-up
      1
      ·
      1 year ago

      I highly recommend nix-direnv along with the direnv emacs package. I do everything with flakes, so I’d have a flake.nix that defines a shell with the inputs I need, then I’d have a .envrc with the contents use flake in the same directory. With those in place, you may need to run direnv allow in that directory, and then you can edit a .org file in the same directory as the flake and the python environment will have what you need.

      Here’s a flake I quickly made using a minimal template.

      {
        description = "Python environment for plotting with Seaborn";
        inputs = {
          nixpkgs.url = github:nixos/nixpkgs/nixpkgs-23.05-darwin;
          flake-utils.url = github:numtide/flake-utils;
        };
      
        outputs = { self, nixpkgs, flake-utils }: 
          flake-utils.lib.eachDefaultSystem (system: 
            let pkgs = import nixpkgs { inherit system; };
                python = pkgs.python3.withPackages (ps: [
                  ps.pandas
                  ps.seaborn
                ]);
            in {
              devShell = pkgs.mkShell {
                buildInputs = [ python ];
              };
            }
          );
      }
      

      And then here’s the .org file I tested with,

      Example of plotting from this [[https://andykuszyk.github.io/2023-11-18-using-emacs-org-mode-as-a-jupyter-notebook.html][blog post]].
      
      Some data to work with,
      
      #+begin_src javascript :tangle data.njson
      {"name": "Spock", "editor": "Emacs"}
      {"name": "James Kirk", "editor": "Vim"}
      {"name": "Dr McCoy", "editor": "Vim"}
      {"name": "Scotty", "editor": "Emacs"}
      {"name": "Worf", "editor": "ed"}
      {"name": "Geordi LaForge", "editor": "Emacs"}
      {"name": "Data", "editor": "Emacs"}
      {"name": "Jean-luc Picard", "editor": "VS Code"}
      {"name": "Wesley Crusher", "editor": "VS Code"}
      {"name": "William Riker", "editor": "Vim"}
      #+end_src
      
      And now we plot,
      
      #+begin_src python :results output file :file usage.png
      import pandas as pd
      import seaborn as sns
      import sys
      
      df = pd.read_json("data.njson", lines=True)
      axes = sns.histplot(df, x="editor")
      axes.get_figure().savefig(sys.stdout.buffer)
      #+end_src
      
      #+RESULTS:
      [[file:usage.png]]