Alphane Moon@lemmy.world to Technology@lemmy.worldEnglish · 11 days agoResearch team uses the human body to power wearables — addresses major obstacle of conventional batterieswww.tomshardware.comexternal-linkmessage-square11fedilinkarrow-up1112arrow-down120cross-posted to: technology@lemmy.zip
arrow-up192arrow-down1external-linkResearch team uses the human body to power wearables — addresses major obstacle of conventional batterieswww.tomshardware.comAlphane Moon@lemmy.world to Technology@lemmy.worldEnglish · 11 days agomessage-square11fedilinkcross-posted to: technology@lemmy.zip
minus-squareDarkassassin07@lemmy.calinkfedilinkEnglisharrow-up2·10 days agoSeems it’s a re-write of this article from Monday, leaving out the transmitter part. https://hackaday.com/2024/11/04/power-over-skin-makes-powering-wearables-easier/ (their source from 3 weeks ago) https://youtu.be/5PEN04-jyCU?si=JzzeLW6KalDKxOss Power isn’t harvested from the human body it’s transmitted (in really small amounts) across the body from one device to another, using capacitive coupling and 40MHz AC voltage.
Seems it’s a re-write of this article from Monday, leaving out the transmitter part.
https://hackaday.com/2024/11/04/power-over-skin-makes-powering-wearables-easier/
(their source from 3 weeks ago) https://youtu.be/5PEN04-jyCU?si=JzzeLW6KalDKxOss
Power isn’t harvested from the human body it’s transmitted (in really small amounts) across the body from one device to another, using capacitive coupling and 40MHz AC voltage.