• frezik@midwest.social
      link
      fedilink
      arrow-up
      1
      ·
      edit-2
      4 months ago

      Hindenburg used 4x 735kW diesel engines which need to be powered constantly (almost 3MW overall). That is the output at the shaft, which means we need electric motors that match that. Fortunately, electric motors are pretty efficient.

      Thin-film can do 80-120W per m^2. That’s the rating when the sun is shining directly on them. We’ll assume it’s flying above the cloud layer and don’t need to worry about that.

      At the top end, it will take 24,500m^2 of panels. Hindenburg had a length of 245.3m and diameter of 41.2m. If it were a cylinder (because I don’t feel like doing the math on its actual shape), it would have a surface area of 35,000m^2, but that includes the underside. It’ll probably pick up some power being reflected off the clouds or the earth’s surface, but you’re probably only getting 60% of the full power averaged over the entire surface.

      Which is closer than I thought it would be, but not quite enough to power the motors if they were 100% efficient, and dropping it to the real world 85-90% won’t help. Neither will accounting for its actual shape.

      • bane_killgrind@lemmy.ml
        link
        fedilink
        English
        arrow-up
        0
        arrow-down
        1
        ·
        4 months ago

        Hindenburg had a cruising speed of 131km/h, so solar electric would just be pegged to a lower top speed assuming we didn’t touch any other parts of the design.

        I think efficiency gains in propeller tech, changes in crew and gear requirements, structural materials, and the rest of it would make it feasible.